Sandia
National
Laboratories

Exceptional
service

in the

national

interest

X

:.é;'o CCR
KO k k o S Center for Computing Research
Hierarchical Task-Data Parallelism

for C++ HPC Applications

GPU Tech. Conference
April 4-7, 2016
San Jose, CA

.
'Aq< -
L e = LN
- R
d

B

H. Carter Edwards

SISt

E

SAND2016-3114 C

f

- P Ry Ty i

[== T== Y -

[? 3 3 [y 3 3 3
- A I R N

\ gnvancen &
. SIMULATION
7 A\ ComPuTing®

7%, U.S. DEPARTMENT OF V/ VY A | DQ:G{

ENERGY /IVA A
Nz National Nuclear Security Administration
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Sandia |
LA M M PS E M P I R E m Laboratories

LA © 0@

Drekar Applications & Libraries | igillales

Kokkos™

performance portability for C++ applications

N /
Multi-Core Many-Core APU CPU+GPU

* 1 4
KOKKOQ Greek: “granule” or “grain” ; like grains of sand on a beach

° e o Sandia
Abstractions: Patterns, Policies, and Spaces L

= Parallel Pattern of user’s computations
= parallel_for, parallel_reduce, parallel_scan, ... EXTENSIBLE

= Execution Policy tells how user computation will be executed
= Static scheduling, dynamic scheduling, thread-teams, ... EXTENSIBLE

= Execution Space tells where user computations will execute

= Which cores, numa region, GPU, ... (extensible)

= Memory Space tells where user data resides

= Host memory, GPU memory, high bandwidth memory, ... (extensible)

= Array Layout (policy) tells how user data is laid out in memory

= Row-major, column-major, array-of-struct, struct-of-array ... (extensible)

= Differentiating feature: Array Layout and Memory Space
= Versus other programming models (OpenMP, OpenACg, ...)
= Critical for performance portability ... see previous GPU-Tech Kokkos talks

Sandia
Acknowledgements) i,

= Sandia National Laboratory (SNL)

Laboratory Directed Research & Development (LDRD) Project
= Strategic R&D funded at Sandia’s discretion
= Recognized with $$ as strategic high priority

= SNL LDRD Team

= myself, Stephen Olivier, Jonathan Berry, Greg Mackey, Siva Rajamanickam,
Kyungjoo Kim, George Stelle, and Michael Wolf

= Scheduling algorithm inspired from SNL’s Qthreads library

= Critical support from NVIDIA

= Thanks to Tony Scudiero, Greg Branch, Ujval Kapasi, and the
whole nvcc development team

= Early access to nvcc CUDA 8 essential for relocatable device code

New (prototype) Kokkos Capability:

Sandia
National _
Laboratories

Dynamic Directed Acyclic Graph (DAG) of Tasks

= Extension of Parallel Pattern

= Tasks: Heterogeneous collection of parallel computations

= DAG: Tasks may have acyclic “execute after” dependences
= Dynamic: New tasks may be created/allocated by executing tasks

= Extension of Execution Policy

= Schedule tasks for execution
= Manage tasks’ dynamic lifecycle

Use Cases (mini-applications) rh) s

1. Incomplete Level-K Cholesky factorization of sparse matrix

Block partitioning into submatrices

DAG of submatrix computations

Each submatrix computation
is internally data parallel

Lead: Kyungjoo Kim

2. Triangle enumeration in social networks (highly irregular graphs)
= |dentify triangles within the graph
= Compute statistics on triangles

*" Triangles are an intermediate result
that do not need to be saved / stored

O

> Problem: memory “high water mark” 1

Lead: Michael Wolf

Use Case 1: Incomplete Cholesky Factorization

Sandia
"1 National

Laboratories

= Reordering and Block Partitioning of Sparse Matrix

= One driver task that creates and spawns submatrix task-DAG

= Submatrix tasks factor, triangular solve, rank-k update, multiply

0

1

2

3

4

5

6

7

8

9

10

1

0

X

X

1

[¢e] (o] ~ (o] (é)] L w N - o

—_
o

10

_
—_

11

0

A
T
J

-4

Use Case 1: Incomplete Cholesky Factorization
Driver Task: Spawn Submatrix Task-DAG

Sandia
National
Laboratories

= Periodically stop iterating and respawn this task with low priority

= Throttle back submatrix task generation for memory constraint

= Allow submatrix tasks to complete and their memory to be reclaimed

7

Use Case 2: Triangle Enumeration 7
and Statistics of Social Network

Laboratories
= miniTri: proxy (mini-application) for triangle based data analytics

= Current linear-algebra strategy miniTri
= “A” is the adjacency matrix tC N é‘) 5’
= “B” is the incidence matrix t: = CT*1

kcount(C, t,, t,)

= Challenges
= Very irregular graph, difficult to statically load balance
= Graph BLAS strategy explicitly forms “C” which is all triangles in the graph

» Extremely large intermediate storage of “C”_,

= Task parallelism pipelines operations _
= Each phase is a data parallel BLAS

c1

= Block partition and pipeline via DAG thT”é_

= Prioritize downstream tasks to “retire”
temporary “C” submatrices

K-count }

National

Task Parallelism for Resource Constraints @VEe=.

Memory Usage for miniTri

C=A°B: 1.00E+14
’ 1.00E+13 e={{==Task // GABB
1.00E+12 GABB
=0 1.00E+11 Supercomputer (1PB)
t,= Ce1
— 1.00E+10 ® o ¢ o Workstation (512GB)
-]
E 1.00E+09
I
; 1.00E+08
= 4]
t= CTe1 £ 1.00E+07
Q
2
1.00E+06 »/-' - 3
1.00E+05 =
: 1.00E+04 =
K-count: -
; 1.00E+03 5
1.00E+02
1k 10k 100k M 10M 100M 1B 108
PI’IOI’ItIZG Number of vertices

= Key insight: Task parallelism can be used to reduce memory
footprint
= Prioritize k-count tasks to free blocks of triangles from memory

= Need runtime system to support advanced resource management/
priorities (ongoing effort: HPX and Kokkos/Qthreads)

Task parallel approach allows Graph BLAS implementation of
miniTri to solve much larger problems

Hierarchical Parallelism i) s

10

Shared functionality with hierarchical data-data parallelism
= The same kernel (task) executed on ...
= OpenMP: League of Teams of Threads
= Cuda: Grid of Blocks of Threads

Intra-Team Parallelism (data or task)
= Threads within a team execute concurrently
= Data: each team executes the same computation

parallel_for

= Task: each team executes a different task

> Nested parallel patterns: for, reduce, scan parallel_reduce

(L]
. A
Mapping teams onto hardware
= CPU : team == hyperthreads sharing L1 cache

= Requires low degree of intra-team parallelism
= Cuda : team == thread block

= Requires high degree of intra-team parallelism

= ... revisit this later

Anatomy and Life-cycle of a Task) e,

= Anatomy

Laboratories

= |s a C++ closure (e.g., functor) of data + function

= |s referenced by a Kokkos::future

= Executes on a single thread or thread team

= May only execute when its dependences are complete (DAG)

= Life-cycle:

? --------- constructing

<
~~.
~~
~.
~
~
~-.
~~
~
~
~
~
~.
~
~

waiting [~

executing -

-
—————

------------------ complete
serial task

on a single thread

task with internal data parallelism
on a thread team

Dynamic Task DAG Execution Policy i) o

Laboratories

= Manage a heterogeneous collection of tasks
= Map task execution to a thread team or single thread
= Execution constrained by task dependence DAG
= Memory management for tasks’ dynamically allocated memory

= Challenges
= Portability across multicore/manycore architectures: CPU, GPU, Xeon Phi, ...
= GPU function pointer accessibility on host and device
= Dynamic — creating tasks within executing tasks on GPU
= Performance — thread scalable allocation/deallocation within finite memory
= Performance — execution overhead and thread scalable scheduling

= Non-blocking constraint for portability and performance
= An executing task cannot block or yield
= Eliminates overhead of saving execution state: registers, stack, ...
= Reduces overhead of context switching

Managing a Non-blocking Task’s Lifecycle i) or

Laboratories

= Create: allocate and construct
= By main process or within another task Create ==~

= Allocate from a memory pool .
\ constructing
= Construct internal data SPAWN-==z5¢«.
= Assign DAG dependences ," ‘‘‘‘‘‘‘ waiting
/
1
= Spawn: enqueue to scheduler [
S N executing
= Respawn: re-enqueue to scheduler \
\
= |Instead of the task waiting or yielding ‘{eSpawn
= Can reassigh DAG dependences @< complete

= Essential capability for mini-Tri
= Used by Cholesky factorization to throttle back task generation
= Reconceived wait-for-child-task use case

» Create & spawn child task(s)

» Reassign DAG dependence(s) to new child task(s)
> Re-spawn to execute again after child task(s) complete

CPU/GPU Portable Scheduler) e

Laboratories

= Multiple Queues of Tasks
= Waiting on incomplete task(s); i.e. task dependences
= Multiple ready to execute queues with priorities: high, regular, low
= Queues managed with atomic operations

= Persistent Threads Strategy (CPU pthreads, GPU thread blocks)
= Pop ready tasks, by priority, and execute
= When task is complete update dependent tasks; e.g., move to ready queue
= When task is dereferenced (last future is destroyed) reclaim memory

= Constraint: Tasks reside within fixed size Memory Pool
= Tasks can create (allocate) and spawn new tasks, even on GPU
= Algorithms must account for fixed size constraint when creating new tasks

= E.g., Incomplete Cholesky factorization throttles back task creation

Use Case 1: Incomplete Cholesky Factorization (f

GPL unacceptab‘e ‘valuation

= |nitial prototype, to-be-done improvements & optimization
v’ Successfully executes dynamic task-DAG
= Recall thread-team tasks are mapped to CUDA thread blocks

» Requires high degree of intra-team parallelism

= Sparse submatrix tasks use intra-team parallelism

Sandia
National _
Laboratories

= Dominated by non-coalesced indirect memory access (reference chasing)

= Insufficient work, low computational intensity, high register usage
» 12% occupancy and poor memory access patterns

= To-do Improvement: map thread-team tasks to CUDA warps
= Requires refactoring of intra-team parallel patterns and policies
= The revisit memory access patterns

= .. stay tuned

Conclusion and Ongoing R&D) e

v’ Prototype Portable Dynamic Task-DAG
= Portable: CPU and NVIDIA GPU architectures
= Collection of heterogeneous parallel computations; a.k.a., tasks
= With directed acyclic graph (DAG) of task dependences
= Dynamic — tasks may create tasks
= Hierarchical — thread-team data parallelism within tasks

= Challenges, primarily for GPU portability and performance
= Non-blocking tasks =» respawn instead of wait
= Memory pool for dynamically allocatable tasks
= TBD: Thread-team map onto GPU warps, not thread blocks

" In progress: Refactoring of thread-team mapping for GPU
» Unfortunately, the clock ran out on us for GPU-Tech 2016

= ... stay tuned

